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ABSTRACT: The electrocatalytic nitrogen reduction reaction (eNRR)
is regarded as promising sustainable ammonia (NH3) production
alternative to the industrial Haber−Bosch process. However, the current
electrocatalytic systems still exhibit a grand challenge to simultaneously
boost their eNRR activity and selectivity under ambient conditions.
Herein, we construct Pd/PdO electrocatalysts with a controlled oxygen
level by a facile electrochemical deposition approach at different gas
atmospheres. Theoretical calculation results indicate that the introduc-
tion of an oxygen atom into a pure Pd catalyst would modulate the
electron density of the Pd/PdO heterojunction and thus influence the
adsorption energy for nitrogen and hydrogen. The calculation results
and experiments show that the Pd/PdO heterojunction with a moderate
oxygen level (O-M) exhibits optimal eNRR performance with a high
NH3 yield of 11.0 μg h−1 mgcat

−1 and a large Faraday efficiency (FE) of
22.2% at 0.03 V (vs RHE) in a 0.1 M KOH electrolyte. The moderate affinity of Pd to N in the Pd/PdO heterojunction and the
inhibition of the hydrogen evolution reaction (HER) can facilitate the breaking of the triple bond of N2 and promote the
protonation of N, which is confirmed by ex situ X-ray photoelectron spectroscopy (XPS) and in situ Raman spectroscopy. In situ
Fourier transform infrared spectroscopy (FTIR) and density functional theory (DFT) calculations further disclose that the O-M
catalysts prefer the distal association pathway during the eNRR process. This work opens a new way to construct heterostructures by
controlling the oxygen level in other electrochemical fields.
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1. INTRODUCTION

The electrocatalytic nitrogen reduction reaction (eNRR) is a
green and environmentally friendly approach that synthesizes
ammonia (NH3) from air and water with renewable electricity
at ambient temperature and pressure.1−5 Hence, the eNRR is
considered a promising sustainable alternative to the industrial
Haber−Bosch process.6−10 Despite the considerable advances,
the electrocatalysts still cannot simultaneously produce high
selectivity and activity for the eNRR. In view of the poor N2

adsorption and high activation barrier for splitting N−N triple
bonds, the developed electrocatalysts exhibit a higher over-
potential for the eNRR than for the hydrogen evolution
reaction (HER), thus resulting in the limited selectivity and
activity for the eNRR in aqueous solutions.
To solve the dilemma, various strategies have been

constructed in the past few years. A facile method is to use
aqueous electrolytes with different pH or additives (e.g., Li+,11

K+,12,13 polyethylene glycol14) to suppress the HER by limiting
the proton concentration on the catalyst surfaces.15 However,

too few protons do not initiate the proton-coupled electron-
involved eNRR. Apart from varying the electrolyte solutions,
single metals with different structures can also function as
mediators for the dilemma of selectivity and activity in the
eNRR.16,17 Theoretical calculation and experimental results
suggest that single metals with a higher nitrogen adsorption
ability than hydrogen exhibit a higher eNRR selectiv-
ity.7,16,18−20 However, too strong a binding to nitrogen species
would be unfavorable for the subsequent desorption of certain
intermediates during the eNRR, which results in poisoning of
the metal catalysts. To mitigate the limitations by the scaling
relations and efficiently enhance the intrinsic eNRR activity,
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several groups have resorted to alloy or metal/semiconductor
catalysts to tune their electron density.21,22 The produced
appropriate electron density could efficiently regulate the
adsorption of the catalysts toward nitrogen against hydrogen in
aqueous electrolytes, thus elevating the eNRR activity and
simultaneously depressing the HER. Although advances have
been achieved, these electrocatalysts exhibit limited eNRR
performances. Hence, rational exploration of more efficient
electrocatalysts is still a great opportunity to promote the
thermodynamics and kinetics for the eNRR in aqueous
electrolytes at a low overpotential.
Recently, several groups found that metal/metal oxide

catalysts may show higher activity for the eNRR.22−24 There
is a certain understanding of the eNRR mechanism of these
catalysts; however, it still needs to be deeply investigated.
Herein, we construct a Pd/PdO heterostructure via control-
lably modulating the oxygen level to boost the intrinsic eNRR
activity and selectivity of Pd-based catalysts. Combining
density functional theory (DFT) calculation and experiments,
we find that oxygen-moderate (O-M) Pd/PdO heterostruc-
tures with an appropriate nitrogen-species-adsorption energy
show higher NH3 yields and Faraday efficiencies (FEs)
compared with those of oxygen-poor (O-P) and oxygen-rich
(O-R) Pd/PdO catalysts. Ex situ (X-ray photoelectron
spectroscopy (XPS)) and in situ spectroscopic technologies
(Raman spectrum, Fourier transform infrared spectroscopy
(FTIR)) coupled with DFT calculations further disclose that
the O-M catalysts prefer the distal association pathway during

the eNRR. These findings can provide a theoretical basis and
guidance for exploring the potential of new heterostructure
catalysts for the eNRR and other electrochemical fields.

2. RESULTS AND DISCUSSION

Density Functional Theory Calculations. Controllably
introducing oxygen into a single Pd metal might be an effective
approach to modulate the electron structure of Pd-based
catalysts and thus influence their intrinsic eNRR activity and
selectivity. Hence, the effect of the oxygen level in Pd/PdO
catalysts on their intrinsic electron structure was systematically
investigated by DFT calculations. Herein, five atomic models
(namely Pd, PdO, O-P, O-M, and O-R Pd/PdO interface)
were established as shown in Figures S1−S3 (in the
Supporting Information) and Figure 1a−f. The corresponding
optimal adsorption energies for N, N2, and H are summarized
in Figures 1g and S4 and Table S1 (in the Supporting
Information). The optimal adsorption energies indicated that
pure Pd would be unfavorable for N and N2 adsorption. After
the addition of a small amount of oxygen, N2 was mainly
anchored on Pd at the interface of Pd and PdO of the Pd/PdO
heterostructures (O-P) and could produce a dramatically
increased nitrogen adsorption energy. However, with the
increase in the oxygen content, the nitrogen adsorption energy
gradually decreased. These results suggested that the
introduction of oxygen would efficiently modulate the
electronic distribution of pure Pd and nitrogen adsorption
ability, thus ultimately affecting the intrinsic eNRR activity of

Figure 1. Optimum adsorption sites of Pd (a, b), PdO (c, d), and the O-M Pd/PdO catalyst (e, f) for N2 and H, respectively. The Pd, N, O, and H
atoms are presented by silvery gray, blue, red, and green solid balls, respectively. (g) Optimal adsorbed energies of five models catalysts for N2 and
H. TDOS (h) and (i) PDOS of O-P, O-M, O-R, and PdO catalysts, respectively.
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Pd-based catalysts. Similarly, the addition of oxygen also
influenced the hydrogen adsorption of the Pd/PdO hetero-
junctions. A hydrogen atom was anchored on oxygen at the
interface of Pd and PdO of the obtained heterojunctions.
Compared with pure Pd, the Pd/PdO heterojunctions
exhibited higher hydrogen adsorption energies, which
indicated that they would intrinsically inhibit the hydrogen
evolution reaction (HER) and thus enhance eNRR selectivity.
Considering that the electrocatalysts with the moderate
adsorption energy for N may facilitate the adsorption and
desorption of nitrogen intermediates,25,26 we assumed that the
O-M Pd/PdO heterojunction may be the most promising
eNRR catalyst among the above-mentioned models.
The electron effect of N2 adsorption on the surface of the

catalyst was further investigated by the surface valence band
spectrum. From the total density of states (TDOS) in Figure
1h, the conductivity of the system gradually became worse with
the increase in the oxygen content, which is consistent with
those of the adsorption energy of N2. The closer the center of
the d-band was to the Fermi level (Ef), the adsorbed N2 was
able to form a strong bond with the transition metal surface,
thereby promoting electron transfer. The partial density of

state (PDOS in Figure 1i) results indicated that the d-band
center (red dotted line) gradually shifted away from Ef in going
from O-P to PdO, that is, the adsorption strength of the
catalyst to nitrogen gradually weakened. Therefore, the
appropriate adsorption strength of the O-M heterojunction
catalyst would be the most favorable characteristic for the NRR
with the easy activation of N2 molecules and the efficient
desorption of nitrogen intermediates.

Catalyst Design and Structure Identification. Inspired
by the exciting computational predictions, facile cyclic
voltammetry (CV)-based electrochemical deposited technol-
ogy was adopted to obtain the O-M Pd/PdO heterojunction
electrocatalysts. Herein, an acid-pretreated carbon cloth (CC)
was used as the working electrode and preliminarily immersed
in an air-filled electrolyte solution containing 25 μM PdCl2.
For comparison, the control electrocatalysts O-P and O-R Pd/
PdO samples were prepared through similar conditions in
argon-filled and oxygen-filled electrolytes, respectively (Figure
S5 in Supporting Information). As can be seen from the
scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) images in Figure 2a,b, the
obtained O-M electrocatalyst nanoparticles were homoge-

Figure 2. Characterization of the O-M Pd/PdO catalysts. (a) SEM, (b) TEM, (c) the corresponding STEM-EDX elemental mapping, (d)
HRTEM, (e) electron diffraction pattern, (f, g) HAADF-STEM images of O-M, and (h) XPS spectra of Pd 3d of three Pd/PdO heterojunction
catalysts.
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neously dispersed on the CC and their average size was
approximately 10 nm. The corresponding scanning TEM
energy-dispersive X-ray spectroscopy (STEM-EDX) mappings
also showed a homogeneous distribution of the Pd and O
elements in the catalyst (Figure 2c). From the high-resolution
TEM (HRTEM) image (Figure 2d), two clear interplanar
spacings of 0.222 and 0.263 nm were obtained, which
corresponded to the planes of Pd (111) and PdO (101),
respectively, indicating the presence of a Pd/PdO hetero-
junction (the yellow dotted line refers to the interface between
Pd and PdO). The electron diffraction pattern also clearly
revealed different lattice planes of Pd (111), (222), and (220),
and faces of PdO (112), (220), and (114) in Pd/PdO (Figure
2e), which indicated that Pd and PdO coexisted in the
heterojunction structure. The atomic structure of the O-M Pd/
PdO heterojunction was further characterized by high-angle
annular dark-field scanning transmission electron microscopy
(HAADF-STEM). Figure 2f shows two different atomic
structure areas. For area 1 (red area), the bright spots depicted
Pd atomic columns (Figure 2g). However, for area 2 (blue
area), darker spots were distributed in the brighter atomic
columns. The brighter and darker spots were assigned to Pd
sites and O sites, respectively, which originate from the higher
atomic number of Pd than that of O. These results indicated
the coexistence of Pd and PdO in the Pd/PdO heterojunction.
The survey XPS spectrum confirmed the presence of C, Pd,
and O elements, which further demonstrated that the Pd/PdO
catalyst was anchored on CC (Figure S6 in the Supporting
Information), in agreement with the elemental mapping
results. In the high-resolution Pd 3d spectrum of the O-M
catalyst (Figure 2h middle), as observed, there were two pairs
of spin−orbit doublets, which indicated the existence of Pd0

(binding energy peaks at 335.5 and 340.8 eV) and Pd2+

(binding energy peaks at 337.9 and 343.2 eV),27−29 further
confirming the formation of a Pd/PdO heterojunction.
Moreover, with the increase in the oxygen level of the Pd/
PdO heterojunctions, the surface content ratio of Pd0 to Pd2+

gradually decreased through the semiquantitative estimation of
the Pd 3d peak area (the value is listed in the upper left corner
of Figure 2h). These results provide evidence to support that
Pd/PdO catalysts with a tunable oxygen content on CC can be
realized by the electrochemical deposition approach.

Catalytic Performance for Nitrogen Reduction Re-
action. The eNRR performance of the obtained O-M
electrocatalyst was systematically investigated in an H-type
electrochemical cell at room temperature and atmospheric
pressure. A standard three-electrode system was used in a 0.1
M KOH electrolyte, where the O-M Pd/PdO catalyst on CC
was used as the working electrode. All potentials were
calibrated with the reversible hydrogen electrode (RHE),
unless otherwise noted. To verify if nitrogen contaminant in
chemicals or laboratory environment affects the eNRR results,
the control experiments were first executed; UV−vis
absorption spectra are given in Figure S7. The results exhibit
that the positive NRR result is only obtained in an N2-
saturated electrolyte. Linear scan voltammetry (LSV) was used
to preliminarily evaluate the NRR activity of the catalysts. It is
obtained from Figure S8 (in the Supporting Information) that
the O-M catalyst delivered a higher current density in the N2-
saturated electrolyte solution than in the Ar-saturated electro-
lyte solution, which demonstrated that the O-M catalyst is
feasible for the eNRR. Figure 3a displays the time-dependent
current density curves at constant potentials in an N2-saturated
electrolyte for 2 h. As the potential became more negative, the
current density increased owing to the accelerated eNRR and
HER processes. The produced NH3 in the electrolyte was
detected by the indophenol blue colorimetric method30 (the
calibration curves as shown in Figure S9 in the Supporting
Information) using UV−vis spectroscopy (Figure 3b). Its NH3
yields and the corresponding FEs under different potentials are
plotted in Figure 3c. It was found that the NH3 yields and FEs
gradually increased with the negative potential increase until
0.03 V (vs RHE), where it produced an NH3 yield with 11.0 μg
h−1 mgcat

−1 and a FE with 22.2%. However, with the increase in

Figure 3. Electrochemical performances of eNRR on the O-M Pd/PdO electrocatalysts. (a) Chronoamperometric curves at different potentials (vs
RHE) in the N2-saturated electrolytes. (b) UV−vis spectra of the electrolytes after electrolysis at different potentials for 2 h. (c) The corresponding
NH3 yield rates (rNH3) and Faradic efficiencies (FE) at different potentials. (d) 1H NMR spectra (500 MHz) of the standard solution of KOH,
15NH4

+, and 14NH4
+ and the resultant electrolyte fed with 14N2 and

15N2. (e) Recycling test. (f) Comparison of the O-M catalyst with the O-P and
O-R catalysts for eNRR.
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negative potential, the NH3 yields and FEs decreased
significantly, which was attributed to the competitive
adsorption of nitrogen and hydrogen species on the electrode
surface. Furthermore, to clearly identify the origin of the
produced NH3 during eNRR, 15N2 isotope labeling experi-
ments were performed on the O-M catalyst. As shown in
Figure 3d, dominant peaks of doublet coupling for 15NH4

+ and
triplet coupling for 14NH4

+ were seen on the proton nuclear
magnetic resonance (1H NMR) spectra in the case of using
15N2 and

14N2, respectively, as the feeding gas, which indicated
that the N2 feeding gas was the sole source for the formation of
NH3 from the electrocatalytic NRR. NH3 was generated
exclusively from the electrocatalytic NRR on the electro-
catalyst. Additionally, the byproduct hydrazine (N2H4) was not
detected in the O-M Pd/PdO-based electrocatalyst system by
the Watt and Chrisp method31 (Figures S9 andS10 in the
Supporting Information). In terms of recycling stability, several
consecutive constant potential electrolysis runs were carried
out at 0.03 V (vs RHE). As can be seen from Figure 3e, there
were negligible changes in the NH3 yields and the
corresponding FEs. Furthermore, the corresponding structure
and morphology of the O-M Pd/PdO catalysts still exhibited
no change through TEM (Figure S11 in the Supporting
Information), which indicated high stability of the O-M Pd/
PdO-based electrocatalyst system. In addition, the control
catalysts O-P and O-R heterojunctions for eNRR were
systematically investigated in the same conditions. As can be
seen from Figure 3f, the NH3 yield and FEs of the O-M
catalyst were obviously higher than those of the O-P and O-R
catalysts. The sharp decrease in the catalytic activity of Pd/
PdO (O-R) is mainly ascribed to the relatively poor
conductivity, the weakened adsorption strength to nitrogen,
and the rapid rising of the HER activity, consistent with the
theoretical calculation results. Furthermore, the O-M catalyst
for the eNRR under optimal conditions produced a
comparable electrocatalytic performance to those of the
reported electrocatalysts (Table S2 in the Supporting
Information). These results demonstrated that the Pd/PdO

heterojunction could boost their intrinsic eNRR activity and
selectivity via controllably modulating the oxygen level.

Ex Situ XPS and In Situ Raman Spectroscopy
Measurements. To verify the surface conversion of the O-
M Pd/PdO heterojunction catalyst, ex situ XPS was applied. As
shown in the high-resolution Pd 3d spectrum in Figures S12
and S13 (in the Supporting Information), the intensity ratio of
Pd0 to Pd2+ gradually increased during the eNRR process
owing to the reduction of more Pd2+ to Pd0 under a more
negative potential. Furthermore, as given in Figure 4a, before
N2 reduction, no N signal was observed in the high-resolution
XPS spectrum of N 1s. During the eNRR process, two peaks
appeared at binding energies (BEs) of ∼398 and ∼400 eV in
the N 1s spectrum, which corresponded to the adsorbed N2
and Pd−N, respectively.32 Notably, the intensity ratio of the
adsorbed N2 (Ads-N2) to Pd−N was obviously decreased
during the NRR process with the decrease in the applied
potential (Figure 4b), which indicated that Ads-N2 may
transfer to the Pd−N bond in the heterojunction structure of
Pd/PdO, thus enhancing the NRR performance. To further
understand the possible reaction mechanism of the O-M
catalyst, in situ Raman spectroscopy was applied under various
potentials.33,34 As given in Figure 4c, two new peaks appearing
at 487 and 644 cm−1 were assigned to the Pd−H band and the
PdO band,35−37 respectively, compared with those of the blank
carbon cloth substrate (Figure S14 in the Supporting
Information). The corresponding peaks intensities during the
eNRR process for the O-M catalyst are shown in Figure 4d. As
the potential shifted from 0.63 to 0.03 V, the intensity of PdO
dropped, which indicated that PdO was dramatically reduced
and Pd tended to preferentially adsorb N atoms, in agreement
with ex situ XPS results. Meanwhile, the intensity of Pd−H was
slightly decreased, which resulted in the suppression of the
competition reaction of HER. In contrast, as the potential
became more negative (from 0.03 to −0.47 V), the intensity of
Pd−H sharply increased owing to the stronger HER
performance, thus lowering the NH3 yield and FEs (Figure
3c). Therefore, the O-M catalysts exhibited the highest NH3
yield and good selectivity at 0.03 V (Figure 3c), which could

Figure 4. (a) Ex situ XPS spectra of N 1s for the O-M Pd/PdO catalysts at different potentials. (b) The corresponding integral intensity area ratio
of the adsorbed N2 to Pd−N (Ads-N2/Pd−N). (c) In situ Raman spectra of the O-M Pd/PdO catalysts for eNRR. (d) Integral intensity of Pd−H
and PdO during NRR by in situ Raman tests.
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be attributed to the fact that the moderate affinity of Pd to N
in the Pd/PdO heterojunction and the inhibition of HER
could facilitate the breaking of the triple bond of N2 and
promote the protonation of N and accelerate the NRR process.
In Situ Fourier Transform Infrared Spectroscopy

Measurements. To further investigate the produced nitrogen

intermediates catalyzed by the O-M catalyst during the eNRR
process within the potential from 0.23 to −0.47 V, in situ
Fourier transform infrared spectroscopy (FTIR) measurements
were carried out, as shown in Figure 5a.38,39 The spectrum
corresponding to the initial 0.23 V, where no reaction occurred
(Figure 5b), was regarded as a reference, and the spectral

Figure 5. (a) In situ FTIR spectra of the O-M catalysts at different potentials. (b) LSV curves of O-M catalyst for eNRR in N2-saturated and Ar-
saturated electrolyte solutions, respectively. The potential dependence of (c) FWHM, (d) integral area of the peak intensity, and (e) peak position
of N−N bending during the eNRR process catalyzed by the O-M catalysts.

Figure 6. (a) Energy diagrams of eNRR on the O-P, O-M, and O-R catalysts. (b) Schematic diagram of the possible distal pathways of the O-M
catalysts for the eNRR and the corresponding bond lengths of N−N (blue) and Pd−N (red). The Pd, N, O, and H atoms are presented by silvery
gray, blue, red, and green solid balls, respectively.
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variations at subsequent potentials were attributed to the
electrochemical reaction induced by the potential change.
Under the treatment of constant potential at −0.47 V, the
obvious bands at 1267 and 1158 cm−1 were observed and
assigned to the H−N−H bending vibration and N−N
stretching vibration, respectively. Combined with the LSV
curves in Figure 5b, it can be seen that these results indicated
the breakage of the NN triple bonds and the production of
nitrogen intermediates on the electrode surface. To better
illustrate the spectroscopic variations within the cathode
material during the eNRR process, the potential dependence
of the full width at half-maximum (FWHM), the integral area
of the peak intensity, and the peak position of N−N bending
are given in Figure 5c−e, respectively. The peak position of the
N−N bond was shifted at a rate of 30 cm−1/V, which is
attributed to the Stark effect.40,41 The band intensity of N−N
bending was enhanced with the increase in the applied
potential. Meanwhile, their FWHM gradually decreased and
the band become sharp, which suggested that N2 molecules
were continuously activated and reduced on the surface of the
heterojunction. Furthermore, the absence of detectable
hydrazine peaks confirmed the high selectivity of the O-M
catalysts for the eNRR. We might deduce that the O-M catalyst
possibly underwent the distal association pathway to a lower
N2 activation barrier and promote NRR kinetics.
Pathway for NRR by DFT Calculations. Density

functional theory (DFT) calculations were carried out to
understand the energetic NRR pathway for the produced Pd/
PdO heterojunction catalysts.42,43 The Gibbs free energy
diagrams of the electrochemical reduction of N2 to NH3 on the
surface of the optimized heterojunction catalysts are displayed
in Figures 6a and S15−S17 (in the Supporting Information). It
can be seen that the potential-determining steps (PDS) are
*NH2 → NH3 (g), *N2 → *NNH, and *N2 → *NNH for the
O-P, O-M, and O-R catalysts, respectively, which indicated
that the O-M and O-R catalysts followed the distal pathway
and the O-P catalyst abided by the alternative pathway.
Meanwhile, it can be clearly seen from Figure 6a that the O-M
catalyst exhibits a lower Gibbs free energy compared with
those of the O-P and O-R catalysts, indicating that it is most
suitable for eNRR. Furthermore, the N2 molecules transformed
into the adsorption species on the surface of the O-M catalyst
during the reaction process, and the N−N bond length (blue)
changed from 1.095 to 1.126 Å (Figure 6b), which indicated
that the N2 molecules were activated on the surface of the
catalyst. Meanwhile, the N−N bond length in the process of
*NNH → *NNH2 increased from 1.226 to 1.386 Å, which
facilitated the stripping of NH3 (g). Additionally, the Pd−N
bond length (gray) increased from 1.997 to 2.158 Å during the
second generation of NH3 (g), which also showed that the
product was an efficient desorption process. Therefore, by
combining the ex situ XPS, in situ Raman, and in situ FTIR
results, we further confirmed that the high performance of
eNRR on the optimal O-M catalyst originated from the
important energetic preference of N2 fixation and efficient
hydrogenation during the NRR process.

3. CONCLUSIONS
In summary, we successfully prepared the Pd/PdO hetero-
junction with controllable oxygen content through the
electrochemical deposition approach at different gas atmos-
pheres. The O-M Pd/PdO heterojunction reached the NH3
yield of 11.0 μg h−1 mgcat

−1 and a large FE of 22.2% at 0.03 V

versus RHE in 0.1 M KOH electrolyte, accompanied by good
stability under alkaline conditions. These can be attributed to
the moderate affinity of Pd to N in the Pd/PdO heterojunction
and the inhibition of HER to facilitate the breaking of the triple
bond of N2 and promote the protonation of N, confirmed by in
situ Raman and ex situ XPS. The eNRR on the surface of the
O-M Pd/PdO heterojunction prefers to occur along the distal
association pathway, observed from in situ FTIR and DFT
calculations. Therefore, this work can encourage and guide
further research on the development of other heterojunction
catalysts for renewable energy applications.
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